Extensions 1→N→G→Q→1 with N=S3×C8 and Q=C22

Direct product G=N×Q with N=S3×C8 and Q=C22
dρLabelID
S3×C22×C896S3xC2^2xC8192,1295

Semidirect products G=N:Q with N=S3×C8 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3×C8)⋊1C22 = S3×C8⋊C22φ: C22/C1C22 ⊆ Out S3×C8248+(S3xC8):1C2^2192,1331
(S3×C8)⋊2C22 = D84D6φ: C22/C1C22 ⊆ Out S3×C8488-(S3xC8):2C2^2192,1332
(S3×C8)⋊3C22 = D85D6φ: C22/C1C22 ⊆ Out S3×C8488+(S3xC8):3C2^2192,1333
(S3×C8)⋊4C22 = D86D6φ: C22/C1C22 ⊆ Out S3×C8488-(S3xC8):4C2^2192,1334
(S3×C8)⋊5C22 = D24⋊C22φ: C22/C1C22 ⊆ Out S3×C8488+(S3xC8):5C2^2192,1336
(S3×C8)⋊6C22 = C24.C23φ: C22/C1C22 ⊆ Out S3×C8488+(S3xC8):6C2^2192,1337
(S3×C8)⋊7C22 = D813D6φ: C22/C1C22 ⊆ Out S3×C8484(S3xC8):7C2^2192,1316
(S3×C8)⋊8C22 = D815D6φ: C22/C1C22 ⊆ Out S3×C8484+(S3xC8):8C2^2192,1328
(S3×C8)⋊9C22 = SD1613D6φ: C22/C1C22 ⊆ Out S3×C8484(S3xC8):9C2^2192,1321
(S3×C8)⋊10C22 = D811D6φ: C22/C1C22 ⊆ Out S3×C8484(S3xC8):10C2^2192,1329
(S3×C8)⋊11C22 = M4(2)⋊26D6φ: C22/C1C22 ⊆ Out S3×C8484(S3xC8):11C2^2192,1304
(S3×C8)⋊12C22 = M4(2)⋊28D6φ: C22/C1C22 ⊆ Out S3×C8484(S3xC8):12C2^2192,1309
(S3×C8)⋊13C22 = C2×S3×D8φ: C22/C2C2 ⊆ Out S3×C848(S3xC8):13C2^2192,1313
(S3×C8)⋊14C22 = C2×D83S3φ: C22/C2C2 ⊆ Out S3×C896(S3xC8):14C2^2192,1315
(S3×C8)⋊15C22 = C2×D24⋊C2φ: C22/C2C2 ⊆ Out S3×C896(S3xC8):15C2^2192,1324
(S3×C8)⋊16C22 = S3×C4○D8φ: C22/C2C2 ⊆ Out S3×C8484(S3xC8):16C2^2192,1326
(S3×C8)⋊17C22 = C2×S3×SD16φ: C22/C2C2 ⊆ Out S3×C848(S3xC8):17C2^2192,1317
(S3×C8)⋊18C22 = C2×Q8.7D6φ: C22/C2C2 ⊆ Out S3×C896(S3xC8):18C2^2192,1320
(S3×C8)⋊19C22 = C2×C8○D12φ: C22/C2C2 ⊆ Out S3×C896(S3xC8):19C2^2192,1297
(S3×C8)⋊20C22 = S3×C8○D4φ: C22/C2C2 ⊆ Out S3×C8484(S3xC8):20C2^2192,1308
(S3×C8)⋊21C22 = C2×S3×M4(2)φ: C22/C2C2 ⊆ Out S3×C848(S3xC8):21C2^2192,1302
(S3×C8)⋊22C22 = C2×D12.C4φ: C22/C2C2 ⊆ Out S3×C896(S3xC8):22C2^2192,1303

Non-split extensions G=N.Q with N=S3×C8 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3×C8).1C22 = S3×C8.C22φ: C22/C1C22 ⊆ Out S3×C8488-(S3xC8).1C2^2192,1335
(S3×C8).2C22 = SD16.D6φ: C22/C1C22 ⊆ Out S3×C8968-(S3xC8).2C2^2192,1338
(S3×C8).3C22 = D8⋊D6φ: C22/C1C22 ⊆ Out S3×C8484(S3xC8).3C2^2192,470
(S3×C8).4C22 = D48⋊C2φ: C22/C1C22 ⊆ Out S3×C8484+(S3xC8).4C2^2192,473
(S3×C8).5C22 = SD32⋊S3φ: C22/C1C22 ⊆ Out S3×C8964-(S3xC8).5C2^2192,474
(S3×C8).6C22 = Q32⋊S3φ: C22/C1C22 ⊆ Out S3×C8964(S3xC8).6C2^2192,477
(S3×C8).7C22 = D12.30D4φ: C22/C1C22 ⊆ Out S3×C8964(S3xC8).7C2^2192,1325
(S3×C8).8C22 = D8.10D6φ: C22/C1C22 ⊆ Out S3×C8964-(S3xC8).8C2^2192,1330
(S3×C8).9C22 = S3×D16φ: C22/C2C2 ⊆ Out S3×C8484+(S3xC8).9C2^2192,469
(S3×C8).10C22 = D163S3φ: C22/C2C2 ⊆ Out S3×C8964-(S3xC8).10C2^2192,471
(S3×C8).11C22 = S3×SD32φ: C22/C2C2 ⊆ Out S3×C8484(S3xC8).11C2^2192,472
(S3×C8).12C22 = D6.2D8φ: C22/C2C2 ⊆ Out S3×C8964(S3xC8).12C2^2192,475
(S3×C8).13C22 = S3×Q32φ: C22/C2C2 ⊆ Out S3×C8964-(S3xC8).13C2^2192,476
(S3×C8).14C22 = D485C2φ: C22/C2C2 ⊆ Out S3×C8964+(S3xC8).14C2^2192,478
(S3×C8).15C22 = C2×S3×Q16φ: C22/C2C2 ⊆ Out S3×C896(S3xC8).15C2^2192,1322
(S3×C8).16C22 = C2×D6.C8φ: C22/C2C2 ⊆ Out S3×C896(S3xC8).16C2^2192,459
(S3×C8).17C22 = D12.4C8φ: C22/C2C2 ⊆ Out S3×C8962(S3xC8).17C2^2192,460
(S3×C8).18C22 = S3×M5(2)φ: C22/C2C2 ⊆ Out S3×C8484(S3xC8).18C2^2192,465
(S3×C8).19C22 = C16.12D6φ: C22/C2C2 ⊆ Out S3×C8964(S3xC8).19C2^2192,466
(S3×C8).20C22 = S3×C2×C16φ: trivial image96(S3xC8).20C2^2192,458

׿
×
𝔽